Uncategorized

com; All Rights Reserved. \) The equality holds only for mutually exclussive events. \( \Rightarrow S = A \cup B \cup C\)Therefore, using the axioms of probability, we get\(P\left( A \right) \geqslant 0,P\left( B \right) \geqslant 0,P\left( C \right) \geqslant 0\,{\text{and}}\,P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right)9 + P\left( C \right)\)\( = P\left( S \right) = 1\)\( \Rightarrow \frac{4}{7} + \frac{1}{7} + \frac{2}{7} = \frac{{4 + 1 + 2}}{7} = \frac{7}{7} = 1\)So, the given probabilities are permissible.

P
you could try this out
(

A

c

additional reading
)

=
P
(

A
)
=
1

P
(
A
)

{\displaystyle P\left(A^{c}\right)=P(\Omega -A)=1-P(A)}

Given

A

{\displaystyle A}

and

A

c

{\displaystyle A^{c}}

are mutually exclusive and that

A

about his A

c

=
other

{\displaystyle A\cup A^{c}=\Omega }

:

P
(
A

A

c

)
=
P
(
A
)
+
P
(

A

c

)

{\displaystyle P(A\cup A^{c})=P(A)+P(A^{c})}

. .